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A Local Mesh Refinement Algorithm for the Time

Domain–Finite Difference Method Using Maxwell’s

Curl Equations

IHN S. KIM, STUDENT MEMBER, IEEE, AND

WOLFGANG J. R. HOEFER, SENIOR MEMBER, IEEE

Abstract —In this paper we consider an eff]cient Iocai mesh refinement

algorithm subdividing a computational domain to resolve fine dimen-

sions in a TD–FD space–time grid structure. At a discontinuous

coarse–fine mesh interface, the bonndary conditions for the tangential

and normal field components are enforced for a smooth transition of

highly nonuniform field quantities,

I. INTRODUCTION

It is rather straightforward to model a region with smoothly

varying field by using a uniform grid system of large mesh size.

However, when the computational domain contains sharp dis-

continuities or objects, the fields become highly nonuniform in

the vicinity of the discontinuities, and a mesh of very small mesh

size must be employed. This requires a very extensive computa-

tional effort.

There are two ways to take into account the strong nonuni-

formity around a local discontinuity. The first is to use a mesh

with gradually changing mesh size as it is currently employed in

the TLM method. Such a procedure was introduced in the

TD–FD methQd by Choi and Hoefer [1]. The problem with this

method is that for a constant stability factor throughout the

mesh, the time step At must always be varied in accordance

with the local mesh size Al.

In this paper, we propose an alternative approach, which was

presented in more general form by Berger and Oliger [2] in 1984

for simple general hyperbolic partial differential equations. We

have applied this approach specifically to Maxwell’s two curl

equations. In this apprQach we embed a locally uniform mesh of

higher density into the larger mesh. The local uniformity Qf the

mesh is important for keeping the same stability criterion during

a simulation. This means that in the different subparts of the

mesh, the ratio of At to Al is kept the same. This has the

advantage that in all subareas of the mesh exactly the same

TD–FD algorithm can be employed.

Furthermore, Holland and Simpson [3] introduced the thin-

strut formalism to include arbitrarily fine wires in their TD–FD

code, THREDE, in 1981. Kunz and Simpson [4] also introduced

an expansion approach to resolve locally fine objects. They first

computed the field with a coarse mesh, thus obtaining the values

of the tangential electric field at interfaces with a subsequently

refined mesh area, which was analyzed in a second run.

In Qur approach, the coarse and the fine mesh regions are

solved simultaneously, and the bQundary conditions between the

two regions are enforced to ensure a smoQth transition Qf highly

nonuniform field quantities. Furthermore, this scheme is recur-

sive; that is, it can provide a finer and finer resolution if

necessaty.
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A A 4 A A

O:E

: Metal discontinuity or dielectric insert

Fig. 1. The 1:4 local mesh refinement scheme in two space dimensions,

and the field components allocated on the cell by Ampere’s law.

The algorithm for this local mesh refinement scheme is pre-

sented in detail in Section II. To demonstrate the accuracy and

the efficiency of our algorithm, we have modeled a thin metallic

discontinuity in a rectangular waveguide and have compared the

results with those obtained with a uniform mesh. This is done in

Section III. Finally, we will discuss some limitations of the

approach and conclude.

II. MESH REFINEMENT ALGORITHM

For ease of understanding, we introduce the mesh refinement

algorithm for the two space dimensional case and assume TE

mode propagation. In this case, the discretized Maxwell’s equa-

tions are

‘~+*’2(ik+:)=H~-’’2(ik+:)
+~[E~(i,k+ l)- E~(i,k)] (la)

o

~;+l/2(,+;,k)=~;-1/2(,+;,k)

—%[~;(~+l>k)-E;(i>k)] (lb)

‘[H~+’’2(ik+:)Ej+’(i, k)= Ej(’, k)+%

( )1_HJ+l/2i,k–~
-A[~}+/:(i+~,~)

( )1_Hf+l/’i_1~,k (lC)

where indices (i, k) correspond to the Cartesian coordinates

(x, z,).

z

L 4 ---- characte,istcdrectl
Fig. 2. Three-dimensional (x, z, t) diagram showing the leapfrog scheme

f~llowing the lines of determination of Maxwell’s two curl equations. The

E fields are calculated at the points .4, E, C, G, and P, and the H fields at

the points B, F, D, and ,r for TE mode propagation.

f

updating and initialization

n+Atc= 4Atm, r;y~~k::,

_ ~712

mr

3Atmrw
—3

E mr

t

- H:;’

7
F$-R:

n+~A t = 2Atmr
—2

E
time average

mr and updating

- -H;:

At —1
mr —

E mr

,=..=,.!,O
r mr

i;itiafization aud

space interpolation

Fig. 3. The 1:4 mesh refinement scheme sequence along the time axis.

The computational cell for the TE mode and the definition of

the field vector components in a cell are shown in Fig. 1. The

fine mesh is denser than the coarse mesh by a factor of 4. Fig. 2

illustrates the leapfrog scheme which all previous authors have

used, in three dimension (x, z, t),and shows the lines of deter-

mination for the discretized Maxwell equations (dotted lines).

The propagation of the waves corresponding to the TD-FD



814 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, NO. 6, JUNE 1990

TABLE I

COMPARISON OFACCURACY OF 1,$111AND CPU TIME FOR THE THREE

DIFFERENT MESH SCHEMES TO ANALYZE A 5-MIL-THICK

AND 5-MIL-LONG METAL INSERT DISCONTINUITY

IN WR-28 AT 27 GHz ON VAX-11/750

computational

scheme CPU s 1s111 Wavelength(m) mesh size

uniform
fme mesh 38998.74 0.856 0.01778 57* fjsl

local 537.68 0.834 0.01827
15 * 171

refined mesh +9*9

uniform
coarse mesh

322.72 0.237 0.01524 15* 171

72.;Enes 0.01777
theoretical result

solution should point in the direction of these lines of determi-

nation. As a first principle, these lines of determination should

be continuous, even in the region with discontinuous mesh size.

Second, field values calculated in the coarse and in the fine

mesh region must satisfy the interface conditions at the bound-

aries between the two.

It is also recommended that the stability criteria remain the

same in the coarse and in the fine mesh. In the case of a mesh

ratio of 1 to 4, this means that the time increment in the fine

mesh must be one fourth the time increment in the coarse mesh,

as shown in Fig. 3. Note, however, that any integer mesh ratio

may be chosen.

The main task in the mesh refinement algorithm for Maxwell’s

curl equations is to ensure continuity of fields across the inter-

faces between coarse and fine meshes. In the following we

summarize the three steps which are schematically indicated in

Fig. 3 along the time axis:

1) Initialize the field values at the coarse–fine mesh bound-

ary by setting E: = E~,, E:+ 1 = EL,. The superscript desig-

nates the time step, and the subscripts m~ and c designate the

refined and coarse mesh, respectively. Hence, the boundary

values in the fine mesh are calculated by initializing and interpo-

lating values in the coarse mesh. For example, for 1< k < m – 1,

E~, is obtained by linear interpolation in time between E: and

E:+ 1, or, equivalently, E~y and E:, on the time–space inter-

face.

2) Obtain HC’11+ 112 = G~~2, and ~~~ li2 by time and space

a~eraging of ~~~z and ~~~z and time averaging of ~~~ and

~~ + 1, resp~ctively, since the field values of I?;+ Ilz = H~<2 and

E:+ 1/2 = E;, are required to follow the lines of determination

of Maxwell’s two curl equations. Note that there are no ~~<z
and E+n+ Ijz on the boundaries of the space–time gricl Structure

in the ~: 4 ratio scheme at first.

3) Update field values by injecting the fine mesh solution

values into the coarse mesh. Since a finer mesh is nested in a

coarse mesh, the field values on the boundaries (interfaces) are

updated every A tc,i.e., every 4A fm,. The strongly nonuniform

field behavior in the fine mesh region is transferred into the

coarse mesh region by this step.

These three steps are performed at every coarse time step as

shown in Fig. 3.

1 ..~. Mesh Refine

0.9-
_ Mode Matching

0.8-

●*.

: 0.7-
●O.--”

>

0.6-

Frequency (GHz)

Fig. 4. 1S1 ~I comparison with the mode matching technique for the whole

WR-28 operating frequency range.

III. EXAMPLE

As an example, we have considered a local scattering problem

in a standard rectangular waveguide (WR-28). A centered thin

metal insert located in the E plane of the waveguide was

considered. The object had a 5 mil thickness and a 5 mil length.

To characterize the small object with a locally refined mesh, we

injected a sinusoidal signal and processed it according to equa-

tions (la)–(lc). Three different computations of the structure

were performed, each with a different discretization scheme,

namely a uniformly fine, a uniformly coarse, and a composite

mesh with a 1:4 gridding ratio. The magnitude of Sll and the

guided wavelength in the structure were computed in the three

simulations. The accuracy of the latter has been verified by

comparison with theoretical results for the guided wavelength.

These values are shown in Table I. The CPU times for the three

cases are also listed in the table. The mesh refinement scheme

yielded very good results 70 times faster than the uniformly fine

mesh, and represented a considerable improvement over the

uniformly coarse mesh. In Fig. 4, ISll I obtained for the whole

operating frequency range of WR-28 waveguide is compared

with the result obtained with the mode matching technique for

the same discontinuity above.

IV. CONCLUSIONS

A mesh refinement scheme for the standard TD-FD method

has been presented. The results are promisi~g. However, there

are two problems that require caution when implementing the

local mesh refinement algorithm [5]. First, the abrupt change of

the mesh size invariably causes spurious reflections. These can

be reduced by using a proper interpolating scheme conformal

with the behavior of the solution. Second, any wave which is

poorly resolved in a coarse mesh will change phase velocity

when passing into a fine mesh. If this wave later passes from the

fine mesh back into the coarse mesh, a serious interaction can

result with that part of the wave which remained in the coarse

mesh. To minimize this velocity error, care must be taken to

ensure that the size of the coarse mesh is still much smaller than

the shortest wavelength under study,
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Frequency-Domain Bivariate Generalized Power

Series Analysis of Nonlinear Analog Circuits

PHILIP J, LUNSFORD II, STUDENT MEMBER, IEEE,

GEORGE W. RHYNE, MEMBER, IEEE, AND

MICH/@L B. STEER, MEMBER, IEEE

Abstract —Bivariate generalized power series analysis is introduced

for the analysis and behavioral modeling of nonlinear analog circnits

and systems. It can be nsed to model analog subsystems and is compati-

ble with circuit simulation. Thus full circuits and behaviorally modeled

analog subcircuits can be simulated together in an analog circuit\system

simulator. The entire analysis is performed in the frequency domain,

and arbitrary nonlinear circuits and any number of noncommensurable

input frequencies can be handled. A diode ring demodulator is analyzed

as an example.

I. INTRODUCTION

The simulation Qf complex analog circuits using harmonic

balance and spectral balance techniques has developed rapidly

in recent years. The analysis of nonlinear analog systems using

behavioral modeling of nonlinear subsystems is less advanced,

with Volterra series system analysis being the dominant method

[I]. This technique, however, is limited to mildly nonlinear

systems.

In this paper we present a frequency-domain modeling method

that is an extension of the generalized power series analysis

(GPSA), introduced by Steer and Khan [2]. GPSA is a fre-

quency-domain simulation technique based on power series that,

in general, can contain complex coefficients. However, GPSA

can only be used with elements or systems having a single

vQltage or current cQntroIling excitation. The bivariate GPSA

introduced here can be used with elements Qr subsystems that

have two controlling quantities and is more general than the

power series method proposed by Narhi [3].

As an, example, we present a behavioral model for a diode

ring mixer. This mixer, shown in Fig. 1, can be analyzed using a

univariate power series to describe the current-voltage charac-

teristics of each diode, but this method requires the use Qf

iterative techniques tQ satisfy Kirchhoff’s voltage and current

laws for the circuit [4]. The behavioral model presented here can
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Fig. 1. Diode ring mixer.

be used as a voltage-controlled voltage source in a GPSA

simulator such as FREDA [4] or in a block system simulator

such as CAPSIM [5].

II. DEVELOPMENT OF ALGEBRAIC FORMULAS

In this section we derive an algebraic formula for the Qutput

components of a nQnlirlearity which can be described by a power

series in two variables having complex coefficients and fre-

quency-dependent time clelays when the inputs are sums of

sinusoids.

A nonlinear element or system having the two multifrequency

inputs .x(t) and z(t) (each having N components),

N N

x(t) = ~ l~(t) = ~ lx~lcos(@~t+@J (1)
k=l k=l

and

N N

z(t) = ~ Zk(z) = ~ Izklcos(tikt+ok) (2)
k=l k=l

can be represented by the bivariate generalized power series

y(t) = ~ ~ aa,pf(a,x)g(p,z)
U=op=o

with

(
.

f(~,~) = f bkxk(t-rk,a)

k=l )

and

( )
P

g(P, z) ‘= ; ~kZk(t –&o) .

k=l

(3)

(4)

(5)

In these expressions, ar, p iS a COmpleX Coefficient, bk and dk
are real, and T~,~ and Ak, ~,are time delays that depend on both

the Qrder of the power series and the index Qf the input

frequency components. Our aim is to rewrite (3) in terms of

phasQrs. The x input can be expressed as

Xk(t ‘7k, o) = lxklcos(”k~+dk – ‘kTk, a )
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