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A Local Mesh Refinement Algorithm for the Time
Domain-Finite Difference Method Using Maxwell’s
Curl Equations

THN S. KIM, STUDENT MEMBER, IEEE, AND
WOLFGANG J. R. HOEFER, SENIOR MEMBER, IEEE

Abstract —In this paper we consider an efficient local mesh refinement
algorithm subdividing a computational domain to resolve fine dimen-
sions in a TD-FD space—time grid structure. At a discontinuous
coarse—fine mesh interface, the boundary conditions for the tangential
and normal field components are enforced for a smooth transition of
highly nonuniform field quantities.

I. InTRODUCTION

It is rather straightforward to model a region with smoothly
varying field by using a uniform grid system of large mesh size.
However, when the computational domain contains sharp dis-
continuities or objects, the fields become highly nonuniform in
the vicinity of the discontinuities, and a mesh of very small mesh
size must be employed. This requires a very extensive computa-
tional effort.

There are two ways to take into account the strong nonuni-
formity around a local discontinuity. The first is to use a mesh
with gradually changing mesh size as it is currently employed in
the TLM method. Such a procedure was introduced in the
TD-FD method by Choi and Hoefer [1]. The problem with this
method is that for a constant stability factor throughout the
mesh, the time step Ar must always be varied in accordance
with the local mesh size Al

In this paper, we propose an alternative approach, which was
presented in more general form by Berger and Oliger [2] in 1984
for simple general hyperbolic partial differential equations. We
have applied this approach specifically to Maxwell’s two curl
equations. In this approach we embed a locally uniform mesh of
higher density into the larger mesh. The local uniformity of the
mesh is important for keeping the same stability criterion during
a simulation. This means that in the different subparts of the
mesh, the ratio of A¢ to Al is kept the same. This has the
advantage that in all subareas of the mesh exactly the same
TD-FD algorithm can be employed.

Furthermore, Holland and Simpson [3] introduced the thin-
strut formalism to include arbitrarily fine wires in their TD-FD
code, THREDE, in 1981. Kunz and Simpson [4] also introduced
an expansion approach to resolve locally fine objects. They first
computed the field with a coarse mesh, thus obtaining the values
of the tangential electric field at interfaces with a subsequently
refined mesh area, which was analyzed in a second run.

In our approach, the coarse and the fine mesh regions are
solved simultaneously, and the boundary conditions between the
two regions are enforced to ensure a smooth transition of highly
nonuniform field quantities. Furthermore, this scheme is recur-
sive; that is, it can provide a finer and finer resolution if
necessary.
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e

i Metal discontinuity or dielectric insert

Fig. 1. The 1:4 local mesh refinement scheme in two space dimensions,
and the field components allocated on the cell by Ampere’s law.

The algorithm for this local mesh refinement scheme is pre-
sented in detail in Section II. To demonstrate the accuracy and
the efficiency of our algorithm, we have modeled a thin metallic
discontinuity in a rectangular waveguide and have compared the
results with those obtained with a uniform mesh. This is done in
Section III. Finally, we will discuss some limitations of the
approach and conclude.

II. MgsH REFINEMENT ALGORITHM

For ease of understanding, we introduce the mesh refinement
algorithm for the two space dimensional case and assume TE
mode propagation. In this case, the discretized Maxwell’s equa-
tions are

‘ 1 1
H;*‘l/z(i,k+ E) = H;‘l/z(i,k+ —2-)
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+
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where indices (i, k) correspond to the Cartesian coordinates

(x,z,).

813 -
Z
/ et
1 /"9\'%/1 :4 refined
- - A mesh
2 ik
Atmr‘ - - 1T — .Q‘_. —_—
T —————— L. — N - = Hx
————— L% JESR R T —— Hz
- 27 P\ o
nat /2) 7 A e Ey
! \
: V\\/
/ ,‘// /“
7, T v
7 II TE W
2T A = e =N - -
/ ,.L./_,,,g _/_% =
LTI
A_icc___¢/’: SRR | W
ate > 78 \ coarse mesh
/ .
/ ! /C\x/
E A
// P /G .
A X
- Ax - " = = = = characteristic direction

Fig. 2. Three-dimensional (x,z,) diagram showing the leapfrog scheme
following the lines of determination of Maxwell’s two curl equations. The
E fields are calculated at the points 4, E, C, G, and P, and the H fields at

the points B, F, D, and [ for

NHAL = JAL e

TE mode propagation.

updating and initialization
= “nt) —Q

E>E. >E

mr
=—t—a] 7/2
Hmr
-3
3Atmr - Emr
| L _4
-=:=—5/2 _2<——?
1 Hmr ) HC Hmr
1At - e = time average
n+ 5 t 2Atmr‘ Emr and updating
e=le T 3/2
Hmr
At £
mr
Emr
e T 172
Hmr —n —o
t — n o EC-» Emr
initialization and

Fig. 3. The 1:4 mesh refinen

The computational cell fc
the field vector componeni

‘fine mesh is denser than th

space interpolation

ment scheme sequence along the time axis.

or the TE mode and the definition of
ts in a cell are shown in Fig. 1. The
e coarse mesh by a factor of 4. Fig. 2

illustrates the leapfrog scheme which all previous authors have

used, in three dimension (.

x,z,t), and shows the lines of deter-

mination for the discretized Maxwell equations (dotted lines).

The propagation of the waves corresponding to the TD-FD



814 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, No. 6, TUNE 1990

TABLE 1
COMPARISON OF ACCURACY OF |§;| AND CPU TIME FOR THE THREE
DIFFERENT MESH SCHEMES TO ANALYZE A 5-MIL-THICK
AND 5-MiL-LoNG METAL INSERT DISCONTINUITY
v WR-28 at 27 GHz oNn VAX-11/750

computational

scheme CPU sec |S11] Wavelength(m) | mesh size
uniform 38998.74 | 0.856 0.01778 57+ 681

15 * 171
local 0.834 0.01827
refined mesh 537.68 +9%9
uniform 322.72 0.237 0.01524 15%171
coarse mesh

72 5 nmes’ 0
faster . theoreuca} result

solution should point in the direction of these lines of determi-
nation. As a first principle, these lines of determination should
be continuous, even in the region with discontinuous mesh size.
Second, field values calculated in the coarse and in the fine
mesh region must satisfy the interface conditions at the bound-
aries between the two.

It is also recommended that the stability criteria remain the
same in the coarse and in the fine mesh. In the case of a mesh
ratio of 1 to 4, this means that the time increment in the fine
mesh must be one fourth the time increment in the coarse mesh,
as shown in Fig. 3. Note, however, that any integer mesh ratio
may be chosen.

The main task in the mesh refinement algorithm for Maxwell’s
curl equations is to ensure continuity of fields across the inter-
faces between coarse and fine meshes. In the following we
summarize the three steps which are schematically indicated in
Fig. 3 along the time axis:

1) Initialize the field values at the coarse—fine mesh bound-
ary by setting E"=E% | E"*1=FE*  The superscript desig-
nates the time step, and the subscrlpts mr and ¢ designate the
refined and coarse mesh, respectively. Hence, the boundary
values in the fine mesh are calculated by initializing and interpo-
lating values in the coarse mesh. For example, for 1 <k <m —1,
EF, is obtained by linear interpolation in time between E” and
E"*3 or, equivalently, £0, and E* on the time—space inter-
face.

2) Obtain Hr*1/?= ﬁ4/2, and E?Y2 by time and space
averaging of H 75/2 and H3/* and time averaging of E7 and
Enr+1 respectlvely, since the field values of Hr41/2 = [ 4/ 2 and
E] Fn1/2 =E; o , are required to follow the lines of determination
of Maxwell’s two curl equations. Note that there are no H,, 4/ 2
and E”*'/2 on the boundaries of the space—time grid structure
in the 1.4 ratio scheme at first.

3) Update field values by injecting the fine mesh solution
values into the coarse mesh. Since a finer mesh is nested in a
coarse mesh, the field values on the boundaries (interfaces) are
updated every At_, i.e., every 4At,,,.. The strongly nonuniform
field behavior in the fine mesh region is transferred into the
coarse mesh region-by this step.

These three steps are performed at every coarse time step as
shown in Fig. 3.

1.0
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0.9 - Mode Matching
0.8

= 071
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0.6 1
0.5 1
04 +——T—r—"71TT—— " T — 77—

26 31 : 36
Frequency (GHz)
Fig. 4. |S;;| comparison with the mode matching technique for the whole

WR-28 operating frequency range.

III. ExaAMPLE

As an example, we have considered a local scattering problem
in a standard rectangular waveguide (WR-28). A centered thin
metal insert located in the E plane of the waveguide was
considered. The object had a 5 mil thickness and a 5 mil length.
To characterize the small object with a locally refined mesh, we
injected a sinusoidal signal and processed it according to equa-
tions (1a)-(1c). Three different computations of the structure
were performed, each with a different discretization scheme,
namely a uniformly fine, a uniformly coarse, and a composite
mesh with a 1:4 gridding ratio. The magnitude of §;; and the
guided wavelength in the structure were computed in the three
simulations. The accuracy of the latter has been verified by
comparison with theoretical results for the guided wavelength.
These values are shown in Table 1. The CPU times for the three
cases are also listed in the table. The mesh refinement scheme
yielded very good results 70 times faster than the uniformly fine
mesh, and represented a considerable improvement over the
uniformly coarse mesh. In Fig. 4, |S;;| obtained for the whole
operating frequency range of WR-28 waveguide is compared
with the result obtained with the mode matching technique for
the same discontinuity above.

IV. ConcLUSIONS

A mesh refinement scheme for the standard TD-FD method
has been presented. The results are promisiflg. However, there
are two problems that require caution when implementing the
local mesh refinement algorithm [5]. First, the abrupt change of
the mesh size invariably causes spurious reflections. These can
be reduced by using a proper interpolating scheme conformal
with the behavior of the solution. Second, any wave which is
poorly resolved in a coarse mesh will change phase velocity
when passing into a fine mesh. If this wave later passes from the
fine mesh back into the coarse mesh, a serious interaction can
result with that part of the wave which remained in the coarse
mesh. To minimize this velocity error, care must be taken to
ensure that the size of the coarse mesh is still much smaller than
the shortest wavelength under study.
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Frequency-Domain Bivariate Generalized Power
Series Analysis of Nonlinear Analog Circuits

PHILIP J. LUNSFORD II, STUDENT MEMBER, IEEE,
GEORGE W. RHYNE, MEMBER, IEEE, AND
MICHAEL B. STEER, MEMBER, IEEE

Abstract —Bivariate generalized power series analysis is introduced
for the analysis and behavioral modeling of nonlinear analog circuits
and systems. It can be used to model analog subsystems and is compati-
ble with circuit simulation. Thus full circuits and behaviorally modeled
analog subcircuits can be simulated together in an analog circuit/system
simulator. The entire analysis is performed in the frequency domain,
and arbitrary nonlinear circuits and any number of noncommensurable
input frequencies can be handled. A diode ring demodulator is analyzed
as an example.

I. INTRODUCTION

The simulation of complex analog circuits using harmonic
balance and spectral balance techniques has developed rapidly
in recent years. The analysis of nonlinear analog systems using
behavioral modeling of nonlinear subsystems is less advanced,
with Volterra series system analysis being the dominant method
[1). This technique, however, is limited to mildly nonlinear
systems.

In this paper we present a frequency-domain modeling method
that is an extension of the generalized power series analysis
(GPSA), introduced by Steer and Khan [2]. GPSA is a fre-
quency-domain simulation technique based on power series that,
in general, can contain complex coefficients. However, GPSA
can only be used with elements or systems having a single
voltage or current controlling excitation. The bivariate GPSA
introduced here can be used with elements or subsystems that
have two controlling quantities and is more general than the
power series method proposed by Narhi [3].

As an.example, we present a behavioral model for a diode
ring mixer. This mixer, shown in Fig. 1, can be analyzed using a
univariate power series to describe the current-voltage charac-
teristics of each diode, but this method requires the use of
iterative techniques to satisfy Kirchhoff’s voltage and current
laws for the circuit [4]. The behavioral model presented here can
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Fig. 1. Diode ring mixer.

be used as a voltage-controlled voltage source in a GPSA
simulator such as FREDA [4] or in a block system simulator
such as CAPSIM [5].

II. DEVELOPMENT OF ALGEBRAIC FORMULAS

In this section we derive an algebraic formula for the output
components of a nonlinearity which can be described by a power
series in two variables having complex coefficients and fre-
quency-dependent time delays when the inputs are sums of
sinusoids.

A nonlinear element or system having the two multifrequency
inputs x(z) and z(¢) (each having N components),

N N
()= L 0 (1) = X | X;lcos (wyt + ) (1)
k=1 k=1
and
N N
2(1)= Y, 2 (1) = X 1Zlcos (wyt +6;) ()
k=1 k=1

can be represented by the bivariate generalized power series

00 )

(i)=Y X a,,f(o.x)g(p,z) (3)
oc=0p=0
with
. -
flo.x)= ( > bkxk(t“Tk,a)) (4)
k=1
and

N 14

g(p,z)==( Y dkzk(’_’\k,p)) . (%)
k=1

In these expressions, @, , is a complex coefficient, b, and d
are real, and 7, , and A, , are time delays that depend on both
the order of the power series and the index of the input
frequency components. Our aim is to rewrite (3) in terms of
phasors. The x input can be expressed as

X (8 =7 o) =X, |cos (0t + by — w7y )

(6)

1 1
= X 0+ S KT e
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